

Space Exploration enabled by Onboard Computing and Decision-making

Steve Chien
Jet Propulsion Laboratory
California Institute of Technology

ai.jpl.nasa.gov

slides & images: http://ai.jpl.nasa.gov/public/home/chien/spring-agu-2006.html

7 May 2004 ASE monitors Mt. Erebus

missions

ASE Onboard Thermal Classifier Thumbnail (Erebus Night)

ASE Onboard Thermal Classifier (Erebus Day)

Band	Wavelength, µm	Band	Wavelength, µm
1	0.630	7	2.022
2	1.245	8	2.103
3	1.266	9	2.254
4	1.599	10	2.264
5	1.659	11	2.274
6	1.780	12	2.285

Detection of a Rare Major Flood on Australia's Diamantina River using the ASE "Muddy" Floodwater Classifier

Cause of flooding: Monsoonal rain

Wavelengths used: 0.86 µm and 0.99 µm

V. Baker, F. Ip, & J. Dohm, University of Arizona

Cryosphere Classifier

Deadhorse (Prudhoe Bay), Alaska

Wavelengths used in classifier: 0.43, 0.56, 0.66, 0.86 and 1.65 μm

R. Greeley & T. Doggett
Arizona State University
Planetary Geology Group

ASE Current Status

- Current count > 5000+ autonomous data collects
 - 1st flights in Fall 2003
- ASE Software so successful it is now in use as baseline operations for the remainder of the mission (Nov 2004-)
 - Enabled > 100x increase in science return
 - Measured as: # events captured / MB downlink
 - Enabled a reduction in net operations costs
 \$3.6M/year → \$1.6M/yr; over \$1M of reduction directly from ASE
 - Operations cost reduction critical in enabling extended mission
 Oct 2005 Oct 2007

Sensorweb

Triggers so far: Wildfires, Floods, Volcanoes (thermal, ash), Ice/Snow, in-situ sensors, modified by cloud cover

Future Missions

Tracking crustal motion for Europa Orbiter

lo Volcanism

Europa Cryobot

Exploring Titan

Ralph Lorenz
Lunar and Planetary Laboratory
University of Arizona

Exploring Titan

- Autonomy Drivers
 - Round trip light time make joysticking untenable
 - Distance and limited power makes downlink limited

Exploring Titan (cont'd)

- Autonomy could enable an aerobot to detect and image transient phenomena e.g.:
 - Methane Thunderstorms,
 - Methane Geysers, or a
 - Cryovolcano

Image taken by Spacecraft

Image taken by Spacecraft

Event Detection

No event Detected: Delete Image

Event Detected

ASE uses state
of the art
Machine
Learning to
detect events in
the presence of
noise

Track a wide range of science events – floods, volcanoes, cryosphere, clouds,...

Key Insight: No need to replicate ground science analysis – just detect activity

continuous planning
- enables seamless
long-duration
operations and
rapid replanning
despite limited

Onboard planning enables rapid response to detected event

